135. The Preparation of Benziminazoles from *x*-Benzamido-acids and Peptides.

By R. CRAWFORD and J. T. EDWARD.

Exploratory studies have been made on the identification of the Cterminal amino-acid residues of peptides as benziminazole derivatives.

HUGHES and LIONS¹ reported that fusion of hippuric acid (I; R = H, R' = Ph) with o-phenylenediamine at 160° gave in good yield 2-benzamidomethylbenziminazole (II; $\mathbf{K} = \mathbf{H}$, $\mathbf{R}' = \mathbf{Ph}$), which could be hydrolysed to 2-aminomethylbenziminazole (III; R = H). However, Lettré, Fritsch, and Porath² obtained α -benzamido β -2-benziminazolylpropionic acid in only 5.5% yield from N-benzoylaspartic acid, the α -carboxyl group

•

of this compound being unreactive under these conditions. In order to assess the feasibility of using the reaction sequence (I) \longrightarrow (II) \longrightarrow (III) to convert the C-terminal amino-acid residues of peptides into their benziminazole derivatives, we have studied the reactions of hippuric acid, N-benzoylalanine (I; R = Me, R' = Ph), and N-benzoylphenylalanine (I; $R = CH_2Ph$, R' = Ph). The compounds in the order named required increasingly drastic conditions to force condensation with *o*-phenylenediamine (see Experimental). The reactions are accelerated by acid catalysts, but these are undesirable for general use because of the acid-lability of some peptide linkages.³

The hydrochlorides of the aminoalkylbenziminazoles (III; R = H, Me, and CH_2Ph), derived from glycine, alanine, and phenylalanine, respectively, were obtained by hydrolysis of benzamido-compounds and were readily distinguished by paper chromatography.

Benzoylglycylglycine (I; R = H, $R' = PhCO·NH·CH_2$) on fusion with *o*-phenylenediamine afforded the benziminazole (II; $R = H, R' = PhCO\cdot NH\cdot CH_2$). On hydrolysis this gave glycine and 2-aminomethylbenziminazole, detected by paper chromatography, in

³ Christensen, Compt. rend. Trav. Lab. Carlsberg, 1953, 28, 265.

¹ Hughes and Lions, J. Proc. Roy. Soc., N.S.W., 1938, **71**, 209. ² Lettré, Fritsch, and Porath, Chem. Ber., 1951, **84**, 719.

approximately equimolar amounts. The same products were obtained, in the expected relative amounts, from glycylglycine (I; $R = H, R' = NH_2 \cdot CH_2$) and from diglycylglycine (I; $R = H, R' = NH_2 \cdot CH_2 \cdot CO \cdot NH \cdot CH_2$); the intermediate benziminazoles (II; $R = H, R' = NH_2 \cdot CH_2 \cdot CO \cdot NH \cdot CH_2$); the intermediate benziminazoles (II; $R = H, R' = NH_2 \cdot CH_2 \cdot CO \cdot NH \cdot CH_2$) and (II; $R = H, R' = NH_2 \cdot CH_2 \cdot CO \cdot NH \cdot CH_2$) were very soluble in water, and were not isolated analytically pure. The behaviour of peptides contrasts with that of α -amino-acids, which do not form benziminazoles when fused with *o*-phenylenediamine.¹

EXPERIMENTAL

Preparation of Benzamidoalkylbenziminazoles.—(a) Without catalyst. The benzamido-acid (1 mole) was heated with o-phenylenediamine (2 moles) in a sealed tube under the conditions tabulated below. These conditions represent the optimal discovered; lower temperatures or shorter reaction times resulted in lower yields.

Reaction									
Starting material	Temp.	Time (hr.)	Product	Yield (%)	М. р.	Formula		Ana C (%)	lysis H (%)
N-Benzoyl- glycine	118°	10	2-Benzamidomethyl- benziminazole	77	228° a, c	$C_{15}H_{13}ON_3, H_2O$	Found : Calc. :	66·5 66·8	$5.5 \\ 5.5$
N-Benzoyl- alanine	137	10	2-1'-Benzamidoethyl- benziminazole	53	254° b	$\mathrm{C_{16}H_{15}ON_3}$	Found : Regd. :	$71 \cdot 8 \\ 72 \cdot 4$	$5.6 \\ 5.6$
N-Benzoyl- phenyl- alanine	250	$3 \cdot 5$	2-α-Benzamidophen- ethylbenziminazole	65	237° a	$\mathrm{C}_{22}\mathrm{H}_{19}\mathrm{ON}_{3}$	Found : Reqd. :	77·0 77·4	$5 \cdot 4 \\ 5 \cdot 6$

^a Crystallized from aqueous ethanol. ^b Crystallized from ethyl acetate. ^c Reported m. p. 230°.¹

(b) With acid as catalyst. The benzamido-acid (1 mole), o-phenylenediamine (2 moles), concentrated hydrochloric acid (2 moles), and 75% phosphoric acid (2 moles) were heated in a sealed tube for 10 hr. At 100°, the yield of 2-benzamidomethylbenziminazole was 73%, that of 2-1'-benzamidoethylbenziminazole, 91%. At 110°, the yield of 2-benzamidomethylbenziminazole was 94%.

Convenient derivatives were : 2-benzamidomethylbenziminazole picrate, m. p. 248° (Found : C, 52.6; H, 3.6. $C_{21}H_{16}O_8N_6$ requires C, 52.5; H, 3.3%); 2-1'-benzamidoethylbenziminazole picrate, m. p. 199° (Found : C, 53.0; H, 3.9. $C_{22}H_{18}O_8N_6$ requires C, 53.4; H, 3.6%); and 2- α -benzamidophenethylbenziminazole picrate, m. p. 221° (Found : C, 58.8; H, 4.0. $C_{28}H_{22}O_8N_6$ requires C, 58.8; H, 3.8%).

Chromatographic Identification of the 2-Aminoalkylbenziminazoles.—The 2-benzamidoalkylbenziminazoles were hydrolysed with boiling 12N-hydrochloric acid (10 parts) for 5 hr. Benzoic acid was removed with ether; the aqueous solutions on evaporation to dryness afforded the hydrochlorides of the 2-aminoalkylbenziminazole. 2-Aminomethylbenziminazole dihydrochloride, recrystallised from ethanol, melted at 267° (reported m. p. 263° ¹). The hydrochlorides of 2-1'-aminoethylbenziminazole, m. p. 85° , and of $2-\alpha$ -aminophenethylbenziminazole were very deliquescent and soluble in water, and were not investigated further except by chromatography on Whatman No. 1 filter paper. The benziminazoles were located as golden-yellow zones by spraying the chromatogram with an ethanolic solution of ninhydrin and heating. $R_{\rm F}$ values for the hydrochlorides are shown below.

Solvent system	(III; $R = H$)	(III; $R = Me$)	(III; $R = CH_2Ph$)
Butanol saturated with 2% aqueous hydro-	0.18	0.59	0.73
chloric acid Pyridine-butanol-ethanol-water 12:66:4:8	0.54	0.70	0.94
(by vol.)	0.01	0.0	0.01
Pyridine-ethanol-water 12:80:8 (by vol.)	0.55	0.84	1.0

2-Hippuramidomethylbenziminazole (II; R = H, $R' = PhCO\cdot NH\cdot CH_2$).—Benzoylglycylglycine (1 g.) and o-phenylenediamine (0.9 g.) were heated in a sealed tube at 137° for 10 hr. Crystallization of the melt from ethyl acetate gave white needles of 2-hippuramidomethylbenziminazole (0.8 g.), m. p. 186° (Found : C, 66.2; H, 5.1. $C_{17}H_{16}O_2N_4$ requires C, 66.2; H, $5\cdot2\%$). The picrate melted at 176° (Found : C, 52.4; H, 4.0. $C_{23}H_{19}O_9N_7$ requires C, 51.6; H, 3.6%). The benziminazole when hydrolysed with 12N-hydrochloric acid yielded glycine and 2-aminomethylbenziminazole in approximately equimolar amounts, as shown by paper chromatography. Reactions of Glycylglycine and of Diglycylglycine with o-Phenylenediamine.—The di- and tripeptide (1 mole) were fused with o-phenylenediamine (2 moles) at 137° for 10 hr. No piperazine-2:5-dione ($R_{\rm F}$ 0·19) was detected in the melts by paper chromatography, propanol-water 1:1 (by vol.) being used as the developing agent, and the chlorine-starch-iodide method ⁴ for locating piperazine-2:5-dione. The melts were hydrolysed with hydrochloric acid, and glycine and 2-aminomethylbenziminazole identified by paper chromatography.

We are grateful to Professor W. Cocker for constant support and encouragement, and to the Medical Research Council of Ireland for a research grant (to R. C.).

UNIVERSITY CHEMICAL LABORATORY, TRINITY COLLEGE, DUBLIN.

[Received, October 3rd, 1955.]

⁴ Smith and Rydon, Nature, 1952, 169, 922.